
9.4: Quan*fier Nega*on, RAA, and CP 

In this sec*on we add two equivalence rules to our system of proof and 
explain how to use CP and RAA within predicate logic. 

The following pairs of statements are obviously equivalent: 

Something is red. 
It is not the case that everything is not red. 

Something is not red. 
It is not the case that everything is red. 

Everything is red. 
It is not the case that something is not red. 

Everything is not red. 
It is not the case that something is red. 

This observa*on mo*vates the rule of quan*fier nega*on: 

Quan*fier Nega*on (QN) 

 (∃𝑥)𝒫 ∶∶ ~(𝑥)~𝒫  

(∃𝑥)~𝒫 ∶∶ ~(𝑥)𝒫  

(𝑥)𝒫 ∶∶ ~(∃𝑥)~𝒫  

(𝑥)~𝒫 ∶∶ ~(∃𝑥)𝒫  

Note that these are equivalence rules, which means that (i) they can be 
applied in both direc*ons and (ii) they can be applied to parts of WFFs.  
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Examples of applica.ons of the QN rule 

Quan*fier Nega*on (QN) 

 (∃𝑥)𝒫 ∶∶ ~(𝑥)~𝒫  

(∃𝑥)~𝒫 ∶∶ ~(𝑥)𝒫  

(𝑥)𝒫 ∶∶ ~(∃𝑥)~𝒫  

(𝑥)~𝒫 ∶∶ ~(∃𝑥)𝒫  

 

A. 
 
 

1. 
2. 

∃x(Ax • Bx) 
~(x)~(Ax • Bx) 

 
1, QN 

B. 
 
 

1. 
2. 

~(y)Cy 
(∃y)~Cy 

 
1, QN 

C. 
 
 

1. 
2. 

(x)(Ax → Ex) 
~(∃x)~(Ax → Ex) 

 
1, QN 

D. 
 
 

1. 
2. 

(x)~(∃y)(Ax	 • Ex) 
~(∃x)(∃y)(Ax • Ex) 

 
1, QN 

E. 
 
 

1. 
2. 

(y)Ky → (x)~Hx 
(y)Ky → ~(∃x)Hx 

 
1, QN 

F. 1. 
2. 

(∃y)(By • ~(x)(Ax ∨ ~Cy)) 
(∃y)(By • (∃x)~(Ax ∨ ~Cy) 

 
1, QN 

 

Examples E and F here illustrate the applica3on of QN to parts of 
WFFs. 
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Example Proof 

1. ~(x)(Ax → Mx) 

2. (x)(Rx → Mx) 						∴ (∃x)(Ax ⋅ ~Rx) 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

  

Tip 2: When the statement in a line of a proof is the nega*on of 
quan*fied statement (i.e., a statement of the form ~(𝑥)𝒫 	or 
~(∃𝑥)𝒫, it is very oPen useful to apply QN and instan*ate using EI 
or UI, as the case may be. 
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CP, RAA and UG 
CP and RAA are of course available to us in predicate logic. So far, to keep the ini<al 
statement of UG simple, we have avoided them in our examples. The use of these 
methods, however, requires us to add an addi<onal restric<on on UG: One cannot 
universally generalize on a constant that occurs in an undischarged assump6on. The 
jus<fica<on for this is similar the jus<fica<on for the other restric<ons: When we 
make an assump<on, we may be adding special informa<on about any of the 
objects we are talking about in our proof. Hence, they are no longer “arbitrary” 
representa<ves of all objects generally. 

Universal Generaliza3on (UG) 
 𝒫! 
∴ (𝑥)𝒫 

where 𝒫! is an instance of (𝑥)𝒫	and (a) 𝑐 does not occur in (𝑥)𝒫, (b) 
𝑐 does not occur in any premise of the argument, (c) 𝑐 does not occur 
in a line derived by an applica<on of EI, and (d) 𝑐 does not occur in an 
undischarged assump<on. 

Example: Fallacious proof of (x)Rx → (x)Bx ∴ (x)(Rx → Bx) 

1. (x)Rx → (x)Bx  

2. Ra Assume 

3. (x)Rx 2 UG (MISTAKE! Viola<on of condi<on (d)) 

4. (x)Bx 1,3 MP 

5. Ba 4  UI 

6. Ra → Ba 2-5 CP 

7. (x)(Rx → Bx) 6 UG 

To see that this argument is invalid, consider a scheme of abbrevia6on for “R” and “B” on which 
not everything is an R and on which no R is a B. For example, let “Rx” mean “x is a rabbit” and 
let “Bx” mean “x is a bird”. Since not everything is a rabbit, “(x)Rx” is false. Hence, by the truth 
table for the material condi6onal, the premise “(x)Rx → (x)Bx” is true. But the conclusion 
“(x)(Rx → Bx)” is obviously false, as it says that all rabbits are birds. 
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Be careful not to take the restric*on on UG to be more restric*ve than it 
is. Consider the following proofs. 

Proof 1. 

1. (x)(Fx → Gx)  

2. (x)(Fx → Hx) ∴ (x)(Fx → (Gx ⋅ Hx)) 
 

 

 

 

 

 

 

 

 

The proof nicely formaTed: 

 

  

1. (x)(Fx → Gx)  

2. (x)(Fx → Hx) ∴ (x)(Fx → (Gx ⋅ Hx)) 

3. Fa Assume 

4. Fa → Ga 1 UI 

5. Fa → Ha 2 UI 

6. Ga 3,4 MP 

7. Ha 3,5 MP 

8. Ga • Ha 6,7 Conj 

9. Fa → (Ga • Ha) 3-8 CP 

10. (x)(Fx → (Gx • Hx)) 9 UG 

The applica6on of UG in line 
10 does not violate the new 
condi6on (d) on UG because 
the assump6on “Fa” had 
been discharged at line 9 (as 
signified by the box)! 
 



 6 

Proof 2. 

1. (x)(Ax → (y)Gy) ∴ (x)Ax → (x)Gx) 

 

 

 

 

 

 

 

 
 

 

The proof nicely formaTed: 

1. (x)(Ax → (y)Gy) ∴ (x)Ax → (x)Gx 

2. (x)Ax Assume 

3. Aa 2 UI 

4. Aa → (y)Gy 1 UI 

5. (y)Gy 3,4 MP 

6. Ga 5 UI 

7. (x)Gx 6 UG 

8. (x)Ax → (x)Gx 2-7 CP 

Again the applica*on of UG in line 7 does not violate condi*on (d), even 
though the assump*on in line 2 has not be discharged because the 
constant “a” in the formula in line 6 that is generalized upon in line 7 does 
not occur in that assump*on. Once again, the lesson is not to take 
condi*on (d) in UG to be more restric*ve than it is. 
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Proof 1 from p. 5 suggests another 4p. 

 

 

 

 

When the conclusion of an argument is a par4cular statement, RAA 
is o<en effec4ve, as it gives us a temporary universal premise to work 
with. 

Another Example 

1. (x)(Px → Sx)  

2. Pa ∨ Pb ∴ (∃x)Sx 
 

 

 
  

Tip 3: If the conclusion of an argument is a universally quan*fied 
statement of the form (𝑥)(𝒫 → 𝒬), use CP to prove an instance 
𝒫! → 𝒬!  and then apply UG. (Be sure your choice of individual 
constant 𝑐 won’t violate any of the condi*ons on UG.) 
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The proof nicely formaCed: 

1. (x)(Px → Sx) ∴ (∃x)Sx 

2. Pa ∨ Pb 	

3. ~(∃x)Sx Assume 

4. (x)~Sx 3 QN 

5. Pa → Sa 1 UI 

6. ~Sa 4 UI 

7. ~Pa 5,6 MT 

8. Pb 2,7 DS 

9. Pb → Sb 1 UI 

10. Sb 8,9 MP 

11. ~Sb 4 UI 

12. Sb • ~Sb 10,11 Conj 

13.  (∃x)Sx 3-12 RAA 

This proof illustrates a further 4p from our text: 

 

 
However, I think the following is a more useful generaliza4on of that 
4p:  
 
 
More specifically: When you don’t see any obvious way of con*nuing 
your proof working top-down, use RAA to try to prove your conclusion! 
 

Tip 4: When the conclusion of an argument is a quan*fied statement 
(i.e., a statement of the form (𝓍)𝒫 or (∃𝓍𝒫), RAA is oPen useful. 

 

Menzel Tip: RAA is oPen useful!  
 


