
9.3: Constructing Proofs

In this section we extend the method of proof introduced in Chapter
8 to predicate logic by adding four new rules, two for each quantifier.

NOTE: All of the rules of statement logic will continue to apply in
predicate logic. Notably, equivalence rules will still be applicable in-
side quantified WFFs.

Example

All moral agents are rational. So, everything is either rational or not
a moral agent.

1. (x)(Mx→ Rx) ∴ (x)(Rx∨ ∼Mx)
2. (x)(∼Mx∨Rx) 1, MI
3. (x)(Rx∨∼Mx) 2, Com

Instances of Quantified WFFs

Definition: Let c be any individual constant (i.e., any of the letters a,
b, ..., u). An instance of a quantified WFF (x)P or (∃x)P is any WFF
obtained by the following two steps:

1. Remove the initial quantifier (x) or (∃x), as the case may be.

2. In the WFF resulting from Step 1, uniformly replace all free oc-
currences of the variable x in P with occurrences of c. We signify
the resulting instance by Pc.



Example

The WFF

(x)(Fx→ (∃y)(Gy∨Hx))

has instances

Fa→ (∃y)(Gy∨Ha), Fb→ (∃y)(Gy∨Hb), ..., Fu→ (∃y)(Gy∨Hu)

The following fail to be instances of the above WFF above for various
reasons:

• (x)(Fx→ (Ga∨Hx))

◦ The initial quantifier was not removed.

• Fb→ (∃y)(Gy∨Hc)

◦ Free occurrences of x are not uniformly replaced by a single
constant.

• Fa→ (∃y)(Ga∨Ha)

◦ Only free occurrences of the variable bound by the initial
quantifier (i.e., x) are to be replaced by occurrences of an
individual constant.

• Fz→ (∃y)(Gy∨Hz)

◦ z is a variable, not an individual constant.

Universal Instantiation (UI)

UI allows us to infer from an assertion about everything (in a given
universe) a corresponding statement about a given individual.



Example

All politicians are egomaniacs. Jesse is a politician. Therefore, Jesse is
an egomaniac.

1. (x)(Px→ Ex)
2. Pj ∴ Ej

One might be tempted to use MP here, but Premise 1 does not have
the proper form. Premise 1 is a universally quantified statement;
what we need is a conditional statement in which ‘Pj’ is the antecedent.
However, the first premise tells us that for everything x, if x is a politi-
cian, then x is an egomaniac. But what goes for everything goes for
Jessie, in particular. Hence, in a complete system, we should be able
to infer the instance Pj→ Ej from the first premise and then legiti-
mately apply MP. The rule that enables us to do exactly this is univer-
sal instantiation :

Universal Instantiation (UI)

(x)P
∴ Pc
where Pc is any instance of (x)P .

Given UI, we can now complete the above proof:

1. (x)(Px→ Ex)
2. Pj ∴ Ej
3. Pj→ Ej 1, UI
4. Ej 2,3 MP



Errors to Avoid

Be very sure that you only apply UI to statements that universally
quantified, not to universally quantified parts of statements.

Example

1. ∼(x)Ax
2. ∼Ac 1, UI (MISTAKE!)

To allow this inference would be to allow an argument like this: “Not everyone is an
Aggie. Therefore, Lyle Lovett is not an Aggie.”

Example

1. (x)Bx→∼(∃y)Oy
2. Bb→∼(∃y)Oy 1, UI (MISTAKE!)

To allow this inference would be to allow an argument like this: “If everyone has a
brother, then no one is an only child. Therefore, if George W. Bush has a brother,
then no one is an only child.”

Contrast the second of these examples with a correct application of

UI:

1. (x)(Bx→∼(∃y)Oy)
2. Bb→∼(∃y)Oy 1, UI (OK!)

The scope of the quantifier makes all the difference!



Existential Generalization (EG)

We can illustrate the need for our next rule with the following argu-
ment:

All politicians are egomaniacs. Jesse is a politician. Therefore, some-
one is an egomaniac.

We’ve just seen that we can infer that Jesse is an egomaniac from
these same premises. So it clearly follows that someone is an ego-
maniac — Jesse, for example. What we need is a rule that enables us
to infer that something in general has a given property from the fact
that some particular object does; we call this rule existential gener-
alization :

Existential Generalization (EG)

Pc
∴ (∃x)P
where Pc is any instance of (∃x)P .

Given EG, we can continue the argument above to reach our desired
conclusion:

1. (x)(Px→ Ex)
2. Pj ∴ (∃x)Ex
3. Pj→ Ej 1, UI
4. Ej 2,3 MP
5. (∃x)Ex 4 EG



Here are some applications of EG, some correct, some incorrect:

1. Fa
2. (∃x)Fx 1 EG

• Correct!

1. Gx
2. (∃y)Gy 1 EG

• Mistake! LIne 1 is not an instance of line 2 (why?)

1. Sb∨Rc
2. (∃z)(Sz∨Rc) 1 EG

• Correct!

1. Sb∨Rc
2. (∃y)(Sy∨Ry) 1 EG

• Mistake! LIne 1 is not an instance of line 2 (why?)

1. Ma • Sa
2. (∃x)(Mx • Sx) 1 EG

• Correct!

1. Ja • ∼Kb
2. (∃x)Jx • ∼Kb 1 EG

• Mistake! LIne 1 is not an instance of line 2 (why?)

1. Ma • Sa
2. (∃x)(Mx • Sa) 1 EG

• Correct!



Existential Instantiation (EI)

We can illustrate the need for our next rule with the following argu-
ment:

All politicians are egomaniacs. Some politicians are ruthless. There-
fore, some egomaniacs are ruthless.

The second premise here tells us that there are ruthless politicians, but it doesn’t
give us any names. However, assuming the premise is true, we can give an arbitrary
ruthless politician a temporary name — “Pat”, say — and reason about him or her.
Specifically, from the first premise, we can infer that, if Pat is a politician, he or
she is an egomanic and, hence, since he or she is a ruthless politician, he or she
must therefore be a ruthless egomanic. But since Pat is, it follows by existential
generalization that something is.

Note that the validity of this reasoning requires that we use a new name that is not
already used for someone else in the context, as we might have made assumptions
about that person that might not be true of an arbitrary ruthless politician. Further-
more, we don’t want to end our reasoning by drawing any conclusions about Pat ,
since that is just a temporary name for an unknown ruthless politician.

The rule that permits us to introduce temporary names and reason
about them in this way is called existential instantiation :

Existential Instantiation (EI)

(∃x)P
∴ Pc
where Pc is an instance of (∃x)P and (i) c does not occur

earlier in the proof and (ii) c does not occur in the last line

of the proof.

Restriction (i) here ensures that we are making no special assumption
about the arbitrary object signified by our new name; restriction (ii)
ensures that our name is truly temporary and is only used to derive
more general conclusions.



Given EI, we can recreate the informal proof given for the argument

above:

1. (x)(Px→ Ex)
2. (∃x)(Px •Rx) ∴ (∃x)(Ex •Rx)
3. Pp •Rp 2, EI
4. Pp→ Ep 1, UI
5. Pp 3 Simp
6. Ep 4,5 MP
7. Rp 3 Simp
8. Ep •Rp 6,7 Conj
9. (∃x)(Ex •Rx) 8 EG

NB!! Note that we applied EI before UI. Note what happens if we’d
applied UI first:

Tip 1 : When you have lines with both universal and exis-
tential quantified statements, APPLY EI BEFORE UI!



Violating Restriction (i)

To illustrate the importance of restriction (i), consider the following “proof”:

1. (∃x)Dx
2. (∃y)Cy ∴ (∃x)(Dx •Cx)
3. Da 1, EI (OK)
4. Ca 2, EI (MISTAKE!)

5. Da •Ca 3,4, Conj
6. (∃x)(Dx •Cx) 5 EG

Letting “Dx” mean “x is a dog” and “Cx” mean “x is a cat”, from the premises that
there are dogs and there are cats we have proved that something is both a dog and
a cat!

Universal Generalization (UG)

We can illustrate the need for our next rule with the following argu-
ment:

All politicians are ambitious. All ambitious people are high strung.
Therefore, all politicians are high strung.

To prove this we use UI to generate instances of the premises, and
infer an instance of the conclusion on which we generalize. The rule
we need to allow this is universal generalization :

Universal Generalization (UG)

Pc
∴ (x)P
where Pc is an instance of (x)P , and (i) c does not occur in a

premise of the argument, (ii) c does not occur in a previous line

derived by an application of EI, and (iii) c does not occur in (x)P .



Here is a proof of our argument that demonstrates UG:

1. (x)(Px→ Ax)
2. (y)(Ay→Hy) ∴ (x)(Px→Hx)
3. Pa→ Aa 1, UI
4. Aa→Ha 2, UI
5. Pa→Ha 3,4, HS
6. (x)(Px→Hx) 5 UG

Errors to Avoid

There are three restrictions on the application of UG; consequently, there are three
common errors to avoid in its application, one for each restriction. These errors
are illustrated in the following examples.

Violating restriction (i): Generalizing on a constant that occurs in a
premise

1. Ac
2. (x)Ax 1, UG (MISTAKE!)

This would be like arguing as follows: “Socrates is snub-nosed. Therefore, everyone
is snubnosed.”

Violating restriction (ii): Generalizing on a constant occurring in a
line derived by EI

1. (∃x)Ax
2. Ac 1, EI
3. (x)Ax 2, UG (MISTAKE!)

This would be like arguing as follows: “There are tall people. So let Pat be an exam-
ple of one. Therefore, everyone is tall.”



Violating restriction (iii): Generalizing on a constant that occurs in
the generalization

1. (x)(Ax→ Bx)
2. Ac→ Bc 1, UI
3. (x)(Ac→ Bx) 2, UG (MISTAKE!)

This would be like arguing as follows: “Everyone who has a brother has a sibling.
Hence, if George, in particular, has a brother, then George has a sibling. Therefore,
if George has a brother, then everyone has a sibling.”

Example Proof

1. (x)(∼Px→Qx)
2. (∃x)(Rx• ∼Qx) ∴ (∃y)(Ry •Py)
3.



A complete proof of the above argument, nicely formatted:

1. (x)(∼Px→Qx)
2. (∃x)(Rx• ∼Qx) ∴ (∃y)(Ry •Py)
3. Ra• ∼Qa 2, EI
4. ∼Pa→Qa 1, UI
5. ∼Qa 3, Simp
6. ∼∼Pa 4,5 MT
7. Pa 6 DN
8. Ra 3, Simp
9. (Ra •Pa) 7,8 Conj
10. (∃y)(Ry •Py) 9 EG


