8.5: Reductio Ad Absurdum

Suppose you were given as a premise that statement A implies the contradiction $B \bullet \sim B$, i.e., that $A \rightarrow(B \bullet \sim B)$. Using $C P$ and $M T$ it is easy to show that, from this premise, $\sim A$ follows:

1. $\mathrm{A} \rightarrow(\mathrm{B} \bullet \sim \mathrm{B})$	
2. B Assume 3. $\sim \sim \mathrm{B}$ $1,2 \mathrm{Conj}$ 4. $\mathrm{B} \rightarrow \sim \sim \mathrm{B}$ $2-3 \mathrm{CP}$ 5. $\sim \mathrm{B} \vee \sim \sim \mathrm{B}$ 4 MI 6. $\sim(\mathrm{B} \bullet \sim \mathrm{B})$ 5 DeM 7. $\sim \mathrm{A}$ $1-6 \mathrm{MT}$.	

The basic insight illustrated here is this:

Whatever implies a contradiction must be false!

This principle is embodied in a proof method known as reductio ad absurdum (RAA), which we now add to our system of propositional logic.

The Two General Forms of RAA

(Premises and derived statements) (Premises and derived statements)

NB: When the conclusion of an argument is the negation of a statement, your assumption should be the unnegated portion of the statement.

Example 1

1. $\mathrm{B} \leftrightarrow \sim \mathrm{A}$
2. $\sim \mathrm{A} \rightarrow \sim \mathrm{C}$
3. $\mathrm{C} \vee \mathrm{D}$
4. $\sim \mathrm{C} \rightarrow \sim \mathrm{D} \quad \therefore \sim \mathrm{B}$

Note that it wouldn't have been a mistake to assume $\sim \sim$ B in line 5, but it would have added an unnecessary step, since you would first need to apply DN to derive B before you could infer $\sim A$ as in line 8.

Tip 12: If the conclusion of an argument (or, more generally, any statement you are trying to prove in the course of an argument) is not a conditional statement, and a direct proof of the statement looks long or difficult, try RAA.

Example 2

1. $\sim \mathrm{A} \rightarrow[(\mathrm{B} \cdot \mathrm{D}) \vee(\mathrm{B} \cdot \mathrm{G})]$
2. $(A \rightarrow E) \cdot(\sim B \vee F)$
3. $\sim \mathrm{K} \rightarrow(\sim \mathrm{E} \bullet \sim \mathrm{F}) \quad \therefore \mathrm{K} \vee \mathrm{D}$

Here is a solution to the preceding problem.

1. $\sim \mathrm{A} \rightarrow[(\mathrm{B} \cdot \mathrm{D}) \vee(\mathrm{B} \cdot \mathrm{G})]$		
2.	$(A \rightarrow E) \bullet(\sim B \vee F)$	
3.	$\sim K \rightarrow(\sim E \bullet \sim F)$	$\therefore \mathrm{KVD}$
4.	$\sim(\mathrm{K} \vee \mathrm{D})$	Assume [RAA]
5.	$\sim K \bullet \sim D$	4 DeM
6.	$\sim \mathrm{K}$	5 Simp
7.	$\sim \mathrm{E} \bullet \sim \mathrm{F}$	3, 6 MP
8.	$\sim \mathrm{E}$	7 Simp
9.	$A \rightarrow E$	2 Simp
10.	$\sim \mathrm{A}$	8, 9 MT
	$(\mathrm{B} \cdot \mathrm{D}) \vee(\mathrm{B} \cdot \mathrm{G})$	1, 10 MP
	$B \cdot(D \vee G)$	11 Dist
13.	B	12 Simp
14.	$\sim B \vee F$	2 Simp
	$\sim \mathrm{F}$	7 Simp
		14, 15 DS
17.	$B \bullet \sim B$	13, 16 Conj
	$K \vee D$	4-17 RAA

We could in principle dispense with CP and just use RAA. To illustrate:

Example 3

1. $\mathrm{Z} \rightarrow(\sim \mathrm{Y} \rightarrow \mathrm{X})$
2. $\mathrm{Z} \rightarrow \sim \mathrm{Y} \quad \therefore \mathrm{Z} \rightarrow \mathrm{X}$

It is often useful (even necessary) to nest an RAA subproof within a CP. (I will definitely put a problem like this one on the next exam!)

Example 4

> 1. $A \rightarrow(B \vee C)$
> 2. $D \rightarrow \sim C \quad \therefore A \rightarrow \sim(D \bullet \sim B)$

