
8.2: Five Equivalence Rules

Comment: Recall that two statements are logically equivalent just in case
they are true on exactly the same truth value assigments. Logically equiv-
alent statements thus express the same information. Hence, given a state-
ment p, one can always validly infer a logically equivalent statement q. This
warrants the formation of rules of inference — known as equivalence rules
— based upon logical equivalence. They provide us with explicit patterns
of logical equivalence that we can use to infer new statements from given
statements in a proof.

Because logically equivalent statements express the same information,
one can always replace any statement-part p of any statement q with a
statement p′ that is logically equivalent to p and the resulting statement q′

will be logically equivalent to q; it will express the same information. Con-
sequently, equivalence rules apply not only to the entire statement in a line
of a proof, but to statement-parts of a statement in a line of a proof. This is
the main difference between implicational rules and equivalence rules.

All of our equivalence rules are of the form p : : q, where the four-dot symbol
(: :) indicates that p is logically equivalent to q. Such a rule tells is that, in
the context of a proof, we may replace any occurrence of p in a line of
a proof (even if p is only part of a statement on a line) with q (or any
occurrence of q with p) and validly infer the result.

We illustrate with the first of our equivalence rules:

Rule 9: Double negation (DN) p : :∼∼ p

Rule 9 thus tells us that if p is a statement in a proof, or a part of a state-
ment in a proof, we can replace it with ∼∼ p and add the resulting state-
ment to the proof as a further step, justified by DN. We can also go from
“right to left”: that is, if ∼∼ p is a (part of a) statement in a proof, we can
replace it with p and add the resulting statement to the proof as a further
step, justified by DN.



Example: A proof for ∼F→∼R, R ∴ F

1. ∼F→∼R

2. R ∴ F

Rule 10: Commutation (Com) p ∨ q : : q ∨ p
p • q : : q • p

Example: A proof for P→∼ (B •O), O • B ∴ ∼P

1. P→∼ (B •O)

2. O • B ∴ ∼P
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Rule 11: Association (As) p ∨ (q ∨ r) : : (p ∨ q) ∨ r
p • (q • r) : : (p • q) • r

Example: A proof for (C∨ R) ∨D, ∼ (R∨D) ∴ C

1. (C∨ R) ∨D

2. ∼ (R∨D) ∴ C

Rule 12: DeMorgan’s laws (DeM) ∼ (p ∨ q) : :∼ p • ∼q
∼ (p • q) : :∼ p∨ ∼q

Example: A proof for (E •D) ∨ (∼E • ∼D), ∼ E ∴ ∼D

1. (E •D) ∨ (∼E • ∼D)

2. ∼ E ∴ ∼D
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Rule 13: Contraposition (Cont) p→ q : :∼q →∼ p

Example: A proof for (W→ D)→∼C, ∼D→∼W ∴ ∼C

1. (W→ D)→ ∼C

2. ∼D→ ∼W ∴ ∼C

Tip 6: It is often useful to consider logically equivalent forms
of the conclusion.

Example

1. ∼G→ ∼A

2. ∼H→ ∼B

3. ∼(G •H) ∴ ∼(A • B)

4.

∼(A • B)
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Tip 7 : Both conjunction and disjunction can lead to useful ap-
plications of De Morgan’s laws.

That is, when you see a conjunction or disjunction, or a negated conjunc-
tion or a negated disjunction, scan your premises and derived lines to see
if a transformation using DeM might be useful.

Example

1. ∼ J∨ ∼L

2. ∼ (J • L)→∼M

3. ∼E∨ (M∨ ∼S) ∴ ∼ (S • E)

∼ (S • E)
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