7.5 Tautology, Contradiction, Contingency, and Logical Equivalence

Definition : A compound statement is a *tautology* if it is true regardless of the truth values assigned to its component atomic statements.

Equivalently, in terms of truth tables:

Definition: A compound statement is a *tautology* if there is a **T** beneath its main connective in every row of its truth table.

Examples

Either it is raining or it is not raining.

If Socrates is a philosopher and a windbag, then Socrates is a philosopher.

\mathbf{S}	W	$(\mathbf{S} \bullet \mathbf{W})$	\rightarrow	\mathbf{S}
Т	Т	Т	Т	Т
Т	F T	F	Т	Т
F			Т	F
F	F	F	Т	F

If Willard is either a philosopher or a windbag but he's not a philosopher, and then Willard is a windbag.

Р	W	$((\mathbf{P}\vee\mathbf{W})$	•	$\sim P)$	\rightarrow	W
Т	Т	Т	F	F	Т	Т
	F		F	F	Т	F
F	Т	Т	Т	Т	Т	Т
F	F	F	F	Т	Т	F

Definition: A compound statement is a *contradiction* if it is false regardless of the truth values assigned to its component atomic statements.

Equivalently, in terms of truth tables:

Definition: A compound statement is a *contradiction* if there is an **F** beneath its main connective in every row of its truth table.

Examples

It is raining and it is not raining.

Willard is either a philosopher or a windbag, and he's neither a philosopher nor a windbag.

Definition: A compound statement is a *contingent* if it is true on some assignments of truth values to its component atomic statements, and false on others.

Equivalently, in terms of truth tables:

Definition: A compound statement is a *contingent* if there is **T** beneath its main connective in at least one row of its truth table, and an **F** beneath its main connective in at least one row of its truth table.

Example

Willard is either a philosopher or a windbag, and he's not a philosopher .

Р	W	$(\mathbf{P}\vee\mathbf{W})$	•	$\sim P$
	Т	Т	F	F
Т	F T	Т	F	F
F			Т	Т
F	F	F	F	Т

Definition: Two statements are *logically equivalent* if they have the same truth values regardless of the truth values assigned to their atomic components.

Equivalently, in terms of truth tables:

Definition: Two statements are *logically equivalent* if, in a truth table for both statements, the same truth value occurs beneath the main connectives of the two statements in each row.

Example

"It is false that Willard is either a philosopher or a linguist" and "Willard is not a philosopher and he is not a linguist"

Р	L	~	$(\mathrm{P} \lor \mathrm{L})$	$(\sim P$	•	\sim L)
Т	Т	F	Т	F	F	F
Т	F T	F	Т	F	F	Т
F	Т	F	Т	Т	F	F
F	F	Т	F	Т	Т	Т

Recall from the truth table schema for \leftrightarrow that a biconditional $\alpha \leftrightarrow \beta$ is true just in case α and β have the same truth value. This fact yields a further alternative definition of logical equivalence in terms of truth tables:

Definition: Two statements α and β are *logically equivalent* if the biconditional statement $\alpha \leftrightarrow \beta$ is a tautology.

Example

Simply consider the truth table for the example above when we form a biconditional out of the two statements:

Р	\mathbf{L}	\sim	$(\mathrm{P} \lor \mathrm{L})$	\leftrightarrow	$(\sim P$	•	\sim L)
Т	Т	F	Т	Т	F	F	F
Т	F	F	Т	Т	F	F	Т
F	Т	F	Т	Т	Т	F	F
F	F	Т	F	Т	Т	Т	Т