7.4 Abbreviated Truth Tables

The full truth table method of Section 7.3 is extremely cumbersome. For example, an argument with only four statement letters requires a truth table with $2^{4}=32$ rows. One with five requires a truth table with $2^{5}=64$ rows. Obviously, truth tables of these sizes are simply impractical to construct. Abbreviated truth tables provide a much more efficient method for determining validity.

The Abbreviated Truth Table Method

The key insight behind the method

If we can construct just one row of a truth table for an argument that makes the premises true and the conclusion false, then we will have shown the argument to be invalid. If we fail at such an attempt, we will have shown the argument to be valid.

The Method Applied to an Invalid Argument

Recall the symbolized argument from the lecture for §7.3:

$$
\mathrm{A} \rightarrow(\sim \mathrm{~B} \vee \sim \mathrm{~W}), \mathrm{W} \therefore \sim \mathrm{~A}
$$

As we showed using the full truth table method, the argument is invalid. We will apply the abbreviated method to derive the same result, albeit in a single line.

1. Write down the symbolized argument:

$$
\mathrm{A} \rightarrow(\sim \mathrm{~B} \vee \sim \mathrm{~W}), \mathrm{W} \quad \therefore \quad \sim \mathrm{~A}
$$

2. Assume that the premises are true and the conclusion false - we thus challenge the argument to prove to us that its valid!

	A	$\rightarrow(\sim \mathrm{B}$	$\vee \sim \mathrm{W}), \mathrm{W}$	\therefore
	T	$\sim \mathrm{A}$		

3. Copy the truth value assigned to W (and, in general, to any statement letter) to its other occurrences:

- As before, we will set newly added truth values in red and we will highlight the truth values that were used to justify their addition in yellow.

	A	$\rightarrow(\sim \mathrm{B}$	\vee	$\sim \mathrm{W}), \mathrm{W}$	\therefore	$\sim \mathrm{A}$
	T	T	T	F		

4. Calculate the truth values of compound (sub)formulas whenever you know the truth values of (enough of) their component parts.

- Thus, we can calculate that $\sim W$ is false in virtue of our assumption that W is true:

	A	$\rightarrow(\sim \mathrm{B}$	$\vee \sim \mathrm{W}), \mathrm{W}$	\therefore	$\sim \mathrm{A}$
	T	FT	T	F	

- And we can calculate that A must be true given that $\sim A$ is false:

$\mathrm{A} \rightarrow(\sim \mathrm{B}$	$\vee \sim \mathrm{W}), \mathrm{W}$	\therefore	$\sim \mathrm{A}$		
	T	FT	T		FT

- Having calculated A's truth value, we copy it over to its other occurrence:

| | A | $\rightarrow(\sim \mathrm{B}$ | $\vee \sim \mathrm{W}), \mathrm{W}$ | \therefore | $\sim \mathrm{A}$ |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| | T T | FT | T | | F T |

- Now, note that this gives us enough information to calculate the truth value of the consequent ($\sim \mathrm{B} \vee \sim \mathrm{W}$). For:
$>$ We have assumed at the outset that our premise $\mathrm{A} \rightarrow(\sim \mathrm{B} \vee \sim \mathrm{W})$ is true.
$>$ And we have calculated that the antecedent A is true.
$>$ By the truth table for conditionals $p \rightarrow q$, in order for a conditional with a true antecedent to be true, the consequent must also be true.
$>$ Hence, ($\sim \mathrm{B} \vee \sim \mathrm{W})$ must be true!

	A	$\rightarrow(\sim \mathrm{B}$	V	$\sim \mathrm{W})$,	W	\therefore	$\sim \mathrm{A}$
T	T	T	FT	T		FT	

- But now that we have deduced that ($\sim \mathrm{B} \vee \sim \mathrm{W}$) must be true (given our initial assumption), we know by the truth table for disjunctions $p \vee q$ that, because its right disjunct $\sim \mathrm{W}$ is false, its left disjunct $\sim \mathrm{B}$ must be true - for a disjunction is true if and only if at least one of its disjuncts is. Thus:

	A	\rightarrow	$(\sim \mathrm{B}$	V	$\sim \mathrm{W})$,	W	\therefore	$\sim \mathrm{A}$
	T	T	T	T	FT	T		FT

- And this, of course, enables us now to deduce that B is false, which completes the row:

	A	\rightarrow	$(\sim \mathrm{B}$	\vee	$\sim \mathrm{W}), \mathrm{W}$	\therefore	$\sim \mathrm{A}$	
	T	T	TF	T	FT	T		FT

- So we have identified a row that makes the premises of our argument true and the conclusion false, so we have thereby demonstrated that the argument is invalid when A is true, B is false, and W is true.
- So we complete the abbreviated truth table by recording this invalidating truth value assignment into the table.

A	B	W	A	\rightarrow	$(\sim \mathrm{B}$	V	$\sim \mathrm{W})$,	W	\therefore	$\sim \mathrm{A}$
T	F	T	T	T	TF	T	FT	T		FT

- Much shorter than the full truth table! To remind you:

A	B	W	A	\rightarrow	$(\sim \mathrm{B}$	V	$\sim \mathrm{W}), \mathrm{W}$	\therefore
T	T	T	F	F	F	F	A	F
T	T	F	T	F	T	T	F	F
T	F	T	T	T	T	F	T	F
T	F	F	T	T	T	T	F	F
F	T	T	T	F	F	F	T	T
F	T	F	T	F	T	T	F	T
F	F	T	T	T	T	F	T	T
F	F	F	T	T	T	T	F	T

- Note that row 3 is exactly the row that we just constructed using the abbreviated truth table method.

The method applied to a valid argument

What happens if the argument in question is valid? We demonstrate with a further example. We'll cut right to the chase with a symbolized argument without worrying about the English argument it symbolizes.

We begin with the usual hypothesis that the premises are true and the conclusion false:

	$\mathrm{W} \vee \mathrm{J},(\mathrm{W} \rightarrow \mathrm{Z})$	$\vee(\mathrm{J} \rightarrow \mathrm{Z}), \sim \mathrm{Z}$	\therefore
T	$\sim(\mathrm{W} \bullet \mathrm{J})$		

Since the conclusion $\sim(\mathrm{W} \cdot \mathrm{J})$ is false, its immediate component $(\mathrm{W} \cdot \mathrm{J})$ must be true:

	$\mathrm{W} \vee \mathrm{J},(\mathrm{W} \rightarrow \mathrm{Z})$	$\vee(\mathrm{J} \rightarrow \mathrm{Z})$,	$\sim \mathrm{Z}$	\therefore
T	$\sim(\mathrm{W} \bullet \mathrm{J})$			

From the truth table schema for conjunctions $p \bullet q$, the only way for (W $\cdot \mathrm{J}$) to be true is if both W and J are true. So we record this information beneath the two statement letters:

	$\mathrm{W} \vee \mathrm{J},(\mathrm{W} \rightarrow \mathrm{Z})$	$\vee(\mathrm{J} \rightarrow \mathrm{Z})$,	$\sim \mathrm{Z}$	\therefore
T	$\mathrm{\sim}(\mathrm{~W}$	$\bullet \mathrm{J})$		
T	T	F	T T T	

And having calculated the truth values for W and J, we copy them over to their other occurrences in the table:

| | $\mathrm{W} \vee \mathrm{J},(\mathrm{W} \rightarrow \mathrm{Z})$ | $\vee(\mathrm{J} \rightarrow \mathrm{Z}), \sim \mathrm{Z}$ | \therefore | $\sim(\mathrm{W}$ | \bullet | $\mathrm{J})$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | T T T T | T T | T | F T T T | | |

So far so good - by the truth table for disjunctions, all we needed was for at least one of W and J to be true in order for W V J to be true and, hence, to remain consistent with our initial assumption that the premises are true. So let us continue.

From our assumption that $\sim \mathrm{Z}$ is true, we calculate that Z is false:

	W	\vee	J,	$(\mathrm{W}$	$\rightarrow \mathrm{Z})$	$\vee(\mathrm{J} \rightarrow \mathrm{Z})$,	$\sim \mathrm{Z}$	\therefore	$\sim(\mathrm{W}$	\bullet
T	T	T	T	T	T	T	F	F	T	T

And, accordingly, we copy that truth value over to the other two occurrences of Z:

Calculating truth values for $(\mathrm{W} \rightarrow \mathrm{Z})$ and $(\mathrm{J} \rightarrow \mathrm{Z})$ we have:

$$
\begin{aligned}
& \mathrm{W} \vee \mathrm{~J},(\mathrm{~W} \rightarrow \mathrm{Z}) \vee(\mathrm{J} \rightarrow \mathrm{Z}), \sim \mathrm{Z} \therefore \sim(\mathrm{~W} \bullet \mathrm{~J}) \\
& \text { T T T T F F T T F F TF F T T T }
\end{aligned}
$$

But now there is a problem!

- On the basis of our original assumption that the premises are true, we have calculated that both disjuncts of our second premise $(\mathrm{W} \rightarrow \mathrm{Z}) \vee(\mathrm{J} \rightarrow \mathrm{Z})$ are false.
- But, by the truth table for disjunctions $p \vee q$, if both disjuncts of a disjunction are false, the disjunction itself is false.
- Hence, we have to calculate that $(\mathrm{W} \rightarrow \mathrm{Z}) \vee(\mathrm{J} \rightarrow \mathrm{Z})$ is false.
- But this contradicts our original assumption that all of the premises - hence, in particular, $(\mathrm{W} \rightarrow \mathrm{Z}) \vee(\mathrm{J} \rightarrow \mathrm{Z})$ - are true!
- So our attempt to make the premises true and the conclusion false failed!
- And this shows that the argument is valid.
(continued \hookrightarrow)
- We indicate this failure with a slash marking the spot where the conflict arose:

