
7.2 Truth Tables 
Truth tables provide a simple method for tes0ng whether 
or not a given argument is valid. They can also be used to 
test for certain logical proper0es of statements. 

Defini&on (sorta): A compound statement is truth 
func)onal if its truth value (i.e., its truth or falsity) is 
completely determined by the truth values of its 
component statements. 

• The compound statements of statement logic are all truth 
func4onal! We will be able to calculate their truth values 
given only the truth values of their atomic parts. 

Negations 

SEMANTIC RULE FOR NEGATIONS 
The truth value of a nega)on ~𝑝 is the opposite of the 
truth value of its immediate component 𝑝. 

This rule is captured in the following truth table schema: 

Truth table schema for negations1 

𝑝 ~𝑝 

T F 
F T 

 
1 This is a truth table schema because it is really a pa)ern that characterizes 
infinitely many truth tables at once — one for every possible formula 𝑝. 
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Conjunctions 

SEMANTIC RULE FOR CONJUNCTIONS 
A conjunc)on is true if both its conjuncts are true; 
otherwise it is false. 

Truth table schema for conjunctions 

𝑝 𝑞 𝑝 • 𝑞 

T T T 
T F F 
F T F 
F F F 

Disjunctions 

SEMANTIC RULE FOR DISJUNCTIONS 
A disjunc)on is false if both its disjuncts are false; 
otherwise it is true. 

Truth table schema for disjunctions 

𝑝 𝑞 𝑝 ∨ 𝑞 

T T T 
T F T 
F T T 
F F F 
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As the truth table makes explicit, we understand “∨” to 
express inclusive rather than exclusive disjunc:on. 

• That is: we allow a disjunc<on to be true if at least one of the 
disjuncts is true. 

Exclusive disjunc:on requires that exactly one of the disjuncts 
be true in order for the disjunc:on to be true. (If this were the 
meaning we desired for “∨”, how would we alter the truth table 
above?) 

The choice of the inclusive meaning is reasonable, as 

1) many instances of disjunc:on in English are inclusive, and 
2) the exclusive meaning can be expressed very naturally in 

terms of the inclusive and nega:on. 

On the first point consider a sentence like the following, which 
might appear in a job adver:sement: 

Applicants must have a BS in computer science or 
at least 3 years of programming experience. 

Clearly, a company would not discard an applica:on from 
someone with both the degree and the experience. 

On the second point, note that an exclusive disjunc:on can be 
expressed simply by expressing an inclusive disjunc:on and 
then explicitly ruling out the possibility of both disjuncts being 
true. LeNng “⊗” express exclusive disjunc:on: 

(𝑝 ⊗ 𝑞) ≡df (𝑝 ∨ 𝑞) • (∼𝑝 ∨ ∼𝑞)2 

 
2 “≡df” here abbreviates “means by defini<on”. 
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Material Conditionals 

SEMANTIC RULE FOR CONDITIONALS 
A condi)onal is false if its antecedent is true and its 
consequent is false; otherwise it is true. 

Truth table schema for conditionals 

𝑝 𝑞 𝑝 → 𝑞 

T T T 
T F F 
F T T 
F F T 

Natural language condi0onals — statements of the form “if 
... then ...” — are in fact very complicated. The truth values 
of some, in par0cular, are not completely determined by the 
truth values of their component statements. One seman0c 
fact, however, 0es all condi0onals together, namely, that 
they are false if their antecedent is true and their 
consequent is false. The material condi0onal is 
dis0nguished by the fact that it is false only under those 
condi0ons and true under all others. 

The material condi0onal is not en0rely a logicians’ 
inven0on; there many instances of it in natural language. 
For example, suppose I were to tell you: 

If you get an A on the final exam, you will get an 
A for the course. 
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The only case in which you would be able to accuse me of 
lying to you (hence, of having said something false) would 
be the case where in fact you get an A on the final, but I do 
not give you an A for the course, i.e., the case where the 
antecedent is true and the consequent is false. In all other 
cases, what I said was true. Hence, the condi0onal in this 
case is plausibly taken to be a material condi0onal. 

Material Biconditionals 

SEMANTIC RULE FOR BICONDITIONALS 
A bicondi)onal is true if the component statements on 
either side of the (main) double arrow have the same truth 
value; otherwise it is false. 

Truth table schema for biconditionals 

𝑝 𝑞 𝑝 ↔ 𝑞 

T T T 
T F F 
F T F 
F F T 

Comment: Note that a material bicondi0onal is logically 
equivalent to (i.e., roughly, means the same as) a conjunct-
0on of two material condi0onals, that is: 𝑝 ↔ 𝑞 means the 
same as (𝑝 → 𝑞) • (𝑞 → 𝑝). 
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Calcula.ng the Truth Value of  a Complex Formula 
We will now show how to use the truth tables for our logical 
operators to calculate the truth value of a complex formula from 
the truth values of its atomic cons<tuents. We begin by lis<ng all 
the ways those cons<tuents can be true or false.  

A B (∼B  → A) ↔ ((A	 • 	B) 	∨ ~A) 

T T        
T F        
F T        
F F        

We now start working from the inside out, calcula<ng the truth 
values of the smaller “subformulas” of our complex formula when 
we have enough informa<on. We will indicate in black the 
“subformulas” of the complex formula whose truth values we are 
able to calculate at each stage; those we can’t will be par<ally 
greyed out. Red truth values are the ones we are calcula<ng; yellow 
highlights mark the truth values involved in the calcula<ons. Thus, 
because we are given the truth values for A over to the leE, we can 
calculate the truth value for ~A in each row: 

A B (∼B  → A) ↔ ((A	 • 	B) 		∨ ~A) 

T T       F			 
T F       F			 
F T       T			 
F F       T			 
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We also have the truth values for B so we can also calculate 
the truth values for ~B: 

A B (∼B  → A) ↔ ((A	 • 	B) 		∨ ~A) 

T T F      F			 
T F T      F			 
F T F      T			 
F F T      T			 

But note that having the truth values for both A and B also 
gives us enough informa0on to calculate the truth value for 
the subformula (A • B), so we’ll fill those values in next: 

A B (∼B  → A) ↔ ((A	 • 	B) 		∨ ~A) 

T T F    			T  F			 
T F T    			F  F			 
F T F    			F  T			 
F F T    			F  T			 
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Because (i) we have the truth values for A and (ii) we’ve 
calculated the truth values for ~B, we can now calculate the 
truth values for (~B → A): 

A B (∼B  → A) ↔ ((A	 • 	B) 		∨ ~A) 

T T F T   			T  F			 
T F T T   			F  F			 
F T F T   			F  T			 
F F T F   			F  T			 

And now that we have calculated the truth values for ~A 
and (A • B) we have enough informa0on to calculate the 
truth values for ((A • B) ∨ ~A): 

A B (∼B  → A) ↔ ((A	 • 	B) 		∨ ~A) 

T T F T   			T T     F			 
T F T T   			F F F			 
F T F T   			F T T			 
F F T F   			F T T			 
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We now have the truth values for the formulas (~B → A) 
and ((A • B) ∨ ~A)  occurring to the le[ and the right 
(respec0vely) of our complex formula. So all that is le[ for 
us to do is to calculate the truth value for that formula in 
each row, which we will display under the main logical 
operator ↔: 

A B (∼B  → A) ↔ ((A	 • 	B) 		∨ ~A) 
T T F T  T 			T 	T	 F				 
T F T T  F 			F 	F	 F				 
F T F T  T 			F 	T	 T				 
F F T F  F 			F 	T	 T				 

Note that the truth values of our complex formula match 
exactly the truth values assigned to B. As we will discuss in 
more detail in §7.5, this means that our complex formula is 
logically equivalent to B; despite being much more compli-
cated gramma0cally, the more complex formula carries 
exactly the same informa0on as B! 


