5.3 Immediate Inferences

Definition (sorta): An inference is *immediate* if the conclusion of the inference is drawn from only one premise. (This is from Section 5.2.)

Conversion

Definition: The *converse* of a standard form categorical statement is the result of interchanging its subject and predicate terms.

Examples

Form	Statement	Converse
Α	All dogs are animals.	All animals are dogs.
Е	No plants are animals.	No animals are plants.
I	Some plants are trees.	Some trees are plants.
0	Some plants are not trees.	Some trees are not plants.

Definition: *Conversion* is the (immediate) inference from a categorical statement to its converse.

Conversion is valid for E and I statements, invalid (in general) for A and O statements.

Comment: In fact, **E** and **I** statements are *logically equivalent* to their converses, that is, each can be validly inferred from the other.

Comment: Note there are some valid *instances* of A and O conversion, e.g., "All squares are equilateral rectangles". The point is that valid conversion from an A or O statement is not *guaranteed* for *any* instance, and hence we say that the *pattern* of conversion is invalid for A and O statements.

Obversion

Definition: The *complement* of a class X is the class of all things that are not members of X.

Example

The complement of the class of humans is the class of all nonhumans, and so would included, e.g., plants, horses, numbers, telephones, etc.

Definition (sorta): The *term-complement* of a term of the form 'non-X' is X; that of a term X not of the form 'non-Y' is 'non-X'.

Comment: The term-complement of 'X' denotes the complement of the class denoted by 'X'. Thus, the complement of the class of dogs is the class of non-dogs, and vice-versa.

Definition: The *obverse* of a standard form categorical statement is the result of (i) changing its quality (from affirmative to negative or vice versa) and (ii) replacing the predicate term with its termcomplement.

Examples

Form	Statement	Obverse
Α	All trees are plants.	No trees are non-plants.
Е	No cats are trees.	All cats are non-trees.
I	Some trees are oaks.	Some trees are not non-oaks.
0	Some trees are not oaks.	Some trees are non-oaks.

Definition: *obversion* is the inference from a categorical statement to its obverse.

Obversion is always valid.

Contraposition

Definition: The *contrapositive* of a standard form categorical statement is the result of (i) replacing its subject term with the term complement of its predicate term and (b) replacing the predicate term with the term-complement of its subject term.

Examples

Form	Statement	Contrapositive
Α	All cats are mammals.	All non-mammals are non-cats.
Е	No bats are elephants.	No non-elephants are non-bats.
Ι	Some plants are weeds.	Some non-weeds are non-plants.
0	Some plants are not weeds.	Some non-weeds are not non-plants.

Definition: *contraposition* is the inference from a categorical statement to its contrapositive.

Contraposition is valid for **A** and **O** statements, invalid (in general) for **E** and **I** statements.

Comment: As with conversion, there are valid *instances* of **E** and **I** contraposition, but the *pattern* in general does not guarantee validity for all such statements.

3

A Simple Mnemonic

- For the rules starting with "C", look at the vowels in the Center:
 - ConvErsion is valid in general for E and I statements only.
 - ContrApOsition is valid in general for A and O statements only.
- Obversion, being the Odd rule, is valid for *all* statements.