
10.4: Probabilistic Reasoning:
Rules of Probability

• Inductive logic involves the notion of strength in its definition:

• And strength in turn was characterized in the last lecture in terms of
probability:

• A sound foundation for inductive logic therefore requires a rigorous
theoretical understanding of the notion of probability.

• And, in fact, probability theory has become an extremely advanced
branch of mathematics.

• In these final lectures we will study the basic laws, or rules, of the
probability calculus, which form the basis of probability theory.

Background to Probability
• There is serious philosophical disagreement about the precise nature

of probability

• Is it something “objective”, something to be discovered out in the
world?

• Is it just a measure of one’s own subjective feelings, a measure of
the strength of one’s belief that something will occur?

Inductive logic is the part of logic that is
concerned with the study of methods of 
evaluating arguments for strength or weakness.

A strong argument is one in which it is probable
(but not necessary) that if the premises are true, then 
the conclusion is true.



• But there is widespread agreement about (a) the probabilities of
certain logically distinctive propositions and (b) how the probability
of a compound statement is determined by the probabilities of its
component statements.

• The probability calculus consists of the basic rules concerning (a) and
(b).

• The rules concerning (b) are analogous to the rules of the truth table
method of Ch. 7.

• A truth table does not tell us the truth value of simple statements
like F and G.

• But it does tell us how the truth value of a compound statement
like (F ∨ G) is determined, given the truth values of F and G.

• Likewise, the probability calculus does not tell us the probability of
simple statements like F and G.

• But it does tell us how the probability of a compound statement
like (F ∨ G) — written P(F ∨ G) — is determined, given the
probabilities of F and G — written P(F) and P(G).

• We will be using the language of statement logic except that the
letter “P” will be reserved for the probability operator.

• Statement letters:  A, B, C, …, O, Q, R, …, Z (though I’ll use some
alternatives below)

• Logical operators:  ~, •, ∨, →, ↔ , and P

• And, as before, we will use lowercase italic letters p, q, r, … as
metavariables that stand for arbitrary statements.

The Rules of Probability
• Probability values are expressed as numbers from 0 to 1.

• 0 is the lowest degree of probability, 1 the highest.



• It is customary to assign a probability of 1 to the tautologies of
statement logic, i.e., those that are true in every row of a truth table.

• This is reasonable because tautologies must be true; there is not
the smallest probability that a tautology could be false.

• This is in fact the first rule of the probability calculus:

• Likewise, a probability of 0 is assigned to contradictions, i.e., those
that are false in every row of a truth table.

Examples

• By Rule 1, P(A v ~A) = P(B → (A → B)) = 1.

• By Rule 2, P(A • ~A) = P(~(B v B)) = 0.

MUTUAL EXCLUSIVITY

• Consider the statements:

(a) Bernie Sanders will win the US presidency in 2024.

(b) RFK Jr. will win the US presidency in 2024.

• These statements both have a probability between 0 and 1.

• However they cannot both be true; they are mutually exclusive.

Rule 1: If a statement p is a tautology, then P(p) = 1.

Rule 2: If a statement p is a contradiction, then P(p) = 0.

Two statements are mutually exclusive if they
cannot both be true.



EXHAUSTIVENESS

• Consider the statements:

(a) W.  V. Quine was born before 1900.

(b) W.  V. Quine was born after 1900.

(c) W.  V. Quine was not born before or after 1900.

• Not only are they mutually exclusive, one of them must be true;
together they exhaust the possibilities. Hence:

• Now suppose p and q are mutually exclusive.

• Let T = The die will turn up 3

• Let S = The die will turn up 6

• There is a 1 in 6 (1/6) chance that the die will land on any given
side.

• So P(T) = P(S) = 1/6

• Hence, since T and S are mutually exclusive, there is a 2 in 6
chance that either T or S, that is:

• P(T∨S) = P(T) + P(S) = 2/6 = 1/3.

• This illustrates the restricted disjunction rule:

Statements p, q, r, … are jointly exhaustive if at least
one of them must be true.

Rule 3:  If p and q are mutually exclusive, then

P(p∨q) = P(p) + P(q).



Examples

• Suppose we want to draw one card from a well-shuffled deck of 52.

• Since drawing an Ace of Clubs (A♣) and drawing an Ace of Diamonds 
(A♦) are mutually exclusive, we have:
P(A♣ ∨ A♦) = P(A♣) + P(A♦) = 1/52 + 1/52 = 2/52 = 1/26

• What is the probability of drawing a Queen (of any suit)?
P((Q♣ ∨ Q♦) ∨ (Q♥ ∨ Q♠)) = P(Q♣) + P(Q♦) + P(Q♥) + P(Q♠) = 

1/52 + 1/52 + 1/52 + 1/52 = 4/52 = 1/13

THE PROBABILITY OF NEGATIONS

• The restricted disjunction (RD) rule enables us to calculate the
probability of a negation, P(~p), from the probability of the statement
negated, P(p).

• Consider any statement p.

• p and its negation ~p are mutually exclusive.

• Hence, by the RD rule

P(p∨~p) = P(p) + P(~p)

• But by Rule 1, the rule for tautologies, we also know that

P(p∨~p) = 1

• Putting these two together, we have

P(p) + P(~p) = 1

• And, subtracting P(p) from both sides, we have our fourth rule, the
negation rule:

Rule 4:  P(~p) = 1 – P(p)



Example 1

• Suppose we know that the probability, P(F), of throwing a 4 on the
next throw of a die is 1 in 6, so P(F) = 1/6.

• Then the negation rule enables us to calculate the probability P(~F)
that a 4 will not turn up on the next throw:

P(~F) = 1 – P(F) = 1 – 1/6 = 6/6 – 1/6 = 5/6.

Example 2

• Since there are 13 cards in each suit, the probability, P(S), that we will
draw a spade from a well-shuffled deck is 13/52.

• Hence, the probability P(~S) that we will not draw a spade is:

P(~S) = 1 – P(S) = 1 – 13/52 = 52/52 – 13/52 = 39/52 = 3/4. 

THE GENERAL DISJUNCTION RULE

• Obviously, not every pair of statements is mutually exclusive.

• In many cases p and q can both be true.

• E.g., Let K = You draw a King and C = You draw a Club. K and C are
not mutually exclusive because of the King of Clubs.

• So we need a more general disjunction rule for calculating
probabilities P(p ∨ q) when p and q are not mutually exclusive.

• Consider the probability P(K∨C) of drawing a King or a Club.

• The sum P(K)+P(C) = 4/52 + 13/52 = 17/52 is too high, since we
are in effect counting K♣ twice — once as a King and once as a
Club.

• So we need subtract the probability of drawing K♣, i.e., the

probability P(K•C) of drawing both a King and a club:
P(K∨C) = P(K) + P(C) – P(K • C) =  4/52 + 13/52 – 1/52 = 16/52 = 4/13



• This illustrates the general disjunction rule:

• Note that, when p and q are mutually exclusive, P(p•q) = 0.

• Hence, we can derive Rule 3 from Rule 5.

• E.g., since it is impossible to draw both a Club (♣) and a Diamond
(♦) on a single draw, the probability of doing so, P(♣ • ♦), is 0.
Hence:

P(♣∨♦) = P(♣) + P(♦) – P(♣ • ♦) = 1/4 + 1/4 – 0 = 2/4 = 1/2. 

Example

• What is the probability P(R∨E) of drawing a red card (R) or an 8 (E)?

• R = You draw either a Heart or a Diamond, (♥∨♦).

• So P(R) = P(♥∨♦) = P(♥) + P(♦) (since ♥ and ♦ are mutually exclusive) = 
13/52 + 13/52 = 26/52 (= 1/2).

• E = You draw either 8♣, 8♦, 8♥, or 8♠

• So P(E) = P(8♣∨8♦∨8♥∨8♠) = P(8♣) + P(8♦) + P(8♥) + P(8♠) = 
4/52 = 1/13.

• Since there are two red eights, 8♦ and 8♥, P(R•E) = 2/52.

• P(R∨E) = P(R) + P(E) - P(R•E) = 26/52 + 4/52 - 2/52 = 28/52 = 7/13.

CONDITIONAL PROBABILITY

• Because p → q is logically equivalent to ~p ∨ q (recall the MI rule), it
follows that P(p → q) = P(~p ∨ q).

• But, as I’ve noted before, the meaning we’ve assigned to → (via its
truth table) does not adequately capture the meaning of “if … then”
in every context — notably, those involving judgments of probability.

Rule 5:  P(p∨q) = P(p) + P(q) – P(p•q)



• Consequently, a rule of probability has been designed to capture the
meaning of conditionals in such contexts.

• Specifically, this rule is designed to enable us to calculate the probability
that q is true conditional on p’s being true.

• We will write “The probability of q conditional on p” as P(q/p).

• This notation can also read as:

• The probability of q on the condition that p.

• The probability of q on p

• The probability of q given p.”

• In statements of the form P(q/p), p is the antecedent and q the consequent.

• The conditional rule is as follows:

• Why was it decided that P(q/p) is the P(p • q) divided by P(p)?

Example 1

• Suppose we are about to draw one card from a well-shuffled deck.

• What’s P(♣/A♣), i.e., the probability of our drawing a club given that we
will draw A♣?

• Intuitively, it is certain, i.e., it should turn out that P(♣/A♣) = 1.

• P(♣/A♣) = P(♣ • A♣)/P(A♣) = P(A♣)/P(A♣) = 1.

Rule 6: 

P(q/p) =
P(p · q)
P(p)
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Example 2

• What’s P(♠/♥), i.e., the probability of our drawing a Spade given that we
will draw a Heart?

• Intuitively, it is nil, i.e., it should turn out that P(♠/♥) = 0. For, given we will
draw a Heart, we can’t possibly draw another suit.

• P(♠/♥) = P(♥ • ♠)/P(♥) = 0/P(♥) = 0/¼ = 0.

Example 3

• What’s P(K♥/K), i.e., the probability of our drawing a King of Hearts
given that we will draw a King (of any suit).

• Intuitively, it should be ¼. For, given that we will draw a King, there is a 1 in
4 chance that it will be the King of Heart instead of one of the other three.

• P(K♥/K) = P(K • K♥)/P(K) = P(K♥)/P(K) =        = 1/52 × 52/4 = ¼.

Example 4

• What’s P(♣/♣∨♠), i.e., the probability of our drawing a Club given that we
will draw black card, i.e., either a Club or a Spade?

• Intuitively, it should be ½. For, given that we will draw a black card, it must
be either a Club or a Spade. Since the number of Clubs = the number of
Spades, there is a 1 in 2 chance our card will be a Club.

• P(♣/♣∨♠) = P((♣∨♠)•♣)/P(♣∨♠) = P(♣)/P(♣∨♠) =                  = ½.

CONJUNCTION

• The conditional rule is important, not only for what it tells us about con- 
ditional probability but also because from it we can immediately deduce
the general conjunction rule:

Rule 7:  P(p•q) = P(p) × P(q/p)
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• To prove this, note that by the conditional rule (Rule 6) we have:

P(q/p) =
P(p · q)
P(p)   

• Next, we multiply both sides of the equation by P(p):

P(p) ⇥ P(q/p) = P(p) ⇥
P(p · q)
P(p)

• Since                                    we have:

P(p) × P(q/p) = P(p•q)

• And that is exactly the conjunction rule (with the two sides switched).

Example 1

• Consider the situation where you draw a card and then, without replacing 
the first card, draw a second card.

• Let A♠1 be drawing A♠ on the first draw and A♠2 be drawing  A♠ on 
the second draw. What is P(A♠1•A♠2) 

• P(A♠1•A♠2) = P(A♠1) × P(A♠2/A♠1) = 1/52 × 0 = 0

Example 2

• What is the probability P(Red1•Red2) of choosing a Red card (i.e., a 
Heart or a Diamond) and then, without putting it back, choosing another?

• P(Red1•Red2) = P((♥∨♦)1•(♥∨♦)2) = P((♥∨♦)1) × P((♥∨♦)2/(♥∨♦)1) 
= 1/2 × 25/51 = 25/102.



Example 3

• What is the probability P(A1•A2) of drawing an ace on the first draw and 
(without replacing the first card drawn) another ace on the second draw?

• P(A1•A2) = P(A1) × P(A2/A1) = 4/52 × 3/51 = 1/13 × 1/17 = 1/221.

INDEPENDENCE

• Our final rule requires us to introduce the important notion of 
independence.

Example

• Hillary Clinton will be the next US President (H)is independent of The first 
card I choose (from a full deck) will be an Ace (A).

• So P(A/H) = P(A)

• The second card I choose will be a Queen (Q) is not independent of The first 
card I choose will be Jack (J).

• In this case, P(Q/J) = 4/51.

• When we’re dealing with independent propositions, we can derive a 
simpler rule for conjunctions, the restricted conjunction rule:

• By Rule 7, P(p•q) = P(p) × P(q/p).

• But since p and q are independent, P(q/p) = P(q).

Two statements p and q are independent if neither 
affects the probability of the other, that is, if P(q/p) = P(q) 
and P(p/q) = P(p).

Rule 8:  P(p•q) = P(p) × P(q)



Example

• Consider the probability of selecting an ace twice by drawing from a 
well-shuffled deck, replacing the card, reshuffling, and drawing a 
second time.

P(A1•A2) = P(A1) × P(A2) = 1/13 × 1/13 = 1/169

An Important Observation

• The restricted conjunction rule highlights an important fact about 
probability.

• Suppose we have a conjunction of independent statements, each of 
which has a probability of less than 1 but greater than ½.

• For example, suppose P(A) = P(B) = P(C) = 7/10. 

• What is the probability of the whole conjunction? Because A, B, and 
C are independent we have:

P(A•B•C) = P(A) × P(B) × P(C) = (7/10)3 = 343/1000

• Although each conjunct is more probable than not, the entire con- 
junction has a probability of less than 1/2.

• Bottom line: A conjunction of likely truths can itself be unlikely. 

Bayes’ Theorem
• We will now focus on one important implication of our system: Bayes’ 

theorem. 

• Named after the English theologian and mathematician Thomas Bayes 
(1702–1761). 

• Bayes’ theorem gives us an important insight into the relationship 
between the evidence for a hypothesis and the hypothesis itself, hence, it 
promises a deeper understanding of the scientific method.

• The letter h will stand for a given hypothesis.



• The letter e will stand for a statement that summarizes the 
observational evidence for that hypothesis. 

• Normally, e is a statement expressing the latest observational evidence for h

• So Bayes’ Theorem yields particular insight into the effect of a new piece of 
evidence for a hypothesis for which some body of evidence already exists.

The Derivation of Bayes’  Theorem

• Bayes’ Theorem is actually a surprisingly simple theorem of the 
probability calculus.

• We start with an instance of the conditional rule (Rule 6), for a given 
hypothesis h and piece of evidence e:

P(h/e) =
P(e · h)
P(e)

• A simple truth table (or proof) shows that e is logically equivalent to 
(e • h) ∨ (e • ~h).

• Hence, we can replace e with (e • h) ∨ (e • ~h) wherever we wish. 
Doing so in the denominator yields:

• By the restricted disjunction rule (Rule 3), 

P((e • h) ∨ (e • ∼h) = P(e • h) + P(e • ~h)

• Hence:

P(h/e) =
P(e · h)

P(e · h) + P(e· ⇠h)



• By the statement logic rule of commutation for • we have:

• By applying the general conjunction rule (Rule 7) three times, we arrive at 
Bayes’ Theorem:

P(h/e) =
P(h) ⇥ P(e/h)

[P(h) ⇥ P(e/h)] + [P(⇠h) ⇥ P(e/⇠h)]
Implications and Applications of Bayes’  Theorem

• Bayes’ theorem tells us the degree to which a given hypothesis is 
supported by the evidence, provided that we have three pieces of 
information: P(h), P(e/h), and P(e/~h). 

• Recall we can calculate P(~h) from P(h).

• P(h) stands for the prior probability of the hypothesis h.

• P(e/h) is the likelihood that the evidence (or phenomenon in question) 
would be present, assuming the hypothesis is true.

• P(e/~h) is the likelihood that the evidence (or phenomenon in question) 
would be present, assuming the hypothesis is false.

The prior probability of a hypothesis h is the 
likelihood of the hypothesis independent of any new 
evidence e.



Example 1

• Suppose a doctor has diagnosed a patient as having either some 
minor stomach troubles or stomach cancer. 

• Let us assume as well that the doctor knows that the patient does not have 
both minor stomach troubles and stomach cancer. 

• The doctor also knows that, given the symptoms, 30% of patients 
have stomach cancer; the rest have minor stomach troubles. 

• The doctor initially suspects that the patient has only minor stomach 
troubles.

• But the doctor then conducts a test on the patient.

• The test has positive result = 90% chance of stomach cancer.

• Let H = the patient has stomach cancer

• Let E = the test is positive

• What is the probability of H given E, i.e., what is P(H/E)?

• NOTE: You might think the obvious answer is 90% but recall that the doctor 
has a prior hypothesis that the patient only has a 30% chance of cancer.

• P(H) = the prior probability of H, before E = 30% = .3 = 3/10.

• P(~H) = 70% = .7 = 7/10 (by the negation rule, Rule 4).

• P(E/H) = 90% = .9 = 9/10.

• P(E/~H) = 10% = .1 = 1/10.

• Plugging these values directly into Bayes’ Theorem, we have:

• So, the probability of the hypothesis H given the evidence E is 27/34, or 
approximately .79.



• I will avoid the derivation, but we note that we get an conditional 
analog of the negation rule (Rule 4):

• Bayes’ Theorem is still applicable when there are more than two 
hypothesis competing for our credence.

• If h1, h2, and h3 are three mutually exclusive, jointly exhaustive hypotheses, 
then ~h1 is equivalent to h2 ∨ h3.

• Hence, substituting into Bayes’ Theorem, we have

P(h1/e) =
P(h1) ⇥ P(e/h1)

[P(h1) ⇥ P(e/h1)] + [P(h2 � h3) ⇥ P(e/(h2 � h3)]

• And this, in turn, reduces to

• In other words, we can accommodate as many hypotheses as we like 
(provided they are mutually exclusive and jointly exhaustive), simply by 
adding relevant clauses to the denominator. 

 P(~h/e) = 1- P(h/e)




